DIVISION OF CLINICAL RESEARCH & EVALUATIVE SCIENCES (CRES)
INFORMATION REQUIRED FOR A PRIORI STATISTICAL POWER ANALYSIS

1. Unless otherwise requested, an a priori statistical power analysis will be conducted to determine the sample size required to assure a statistical power (1-\(\beta\)) of .80 at an alpha (\(\alpha\)) of .05 for a nondirectional (two-tail) test of significance and an attrition rate of 20%.

2. The investigator submitting the study proposal should provide the following three pieces of information (a-c) necessary to complete the statistical power analysis. This information should be provided either in the Design and Methods section of the Study Proposal Form or as a separate addendum following discussion with the Division of CRES, and include:

 a. Research Design to include description of the number of groups (e.g., intervention/treatment groups, control/placebo group, etc.) and number of repeated measurement events per group (e.g., pretest-posttest, baseline-quarterly X 1 year, etc).

 i. Some examples of the Research Design with the above information include:

 1. A randomized clinical trial with two parallel arms – treatment and control/placebo group
 2. A quasiexperimental pre-post test design with control (i.e., treatment and control/placebo group without randomization)
 3. A one-group quasiexperimental pre-post test design

 b. The primary and secondary (or exploratory) outcomes of interest for the proposed study. Unless otherwise requested, the statistical power analysis will be based on the primary outcome(s) identified.

 c. The standardized effect size to be detected by the analysis for the primary outcome(s) based on previous research and/or the empirical literature. In other words, how big of a change do you want to observe and attribute to your intervention. This requires two pieces of information:

 i. How much change you expect to observe in the primary outcome(s) following the intervention, and
 ii. What is the normal amount of variation/rate at baseline for this primary outcome(s).

 iii. Examples of such information are:

 1. You expect to observe a 10% decrease in mortality rate from a baseline mortality rate of 30%.
 2. In other words you will need to provide the standard deviations, variances, or baseline rates of the primary outcomes of interest.