Background

- Monitoring the FHR intends to determine if a fetus is well oxygenated because the brain modulates the heart rate.

- FHR monitoring = fetal brain monitoring

- 1980: 45 % of laboring women
- 1988: 74 % of laboring women
- 2002: 85 % of laboring women
• Low risk EFM
• review every 30 min. in first stage of labor
• review every 15 min. in second stage of labor

• High risk EFM
• review every 15 minutes in first stage of labor
• review every 5 minutes in second stage of labor

• Long-term variability and short-term variability are visually determined and considered one entity.
Baseline Fetal Heart Rate

Definition
- Average FHR rounded to 5 bpm during a 10 minute period, but excludes
 - Periods of marked increased FHR variability
 - Segments of baseline that differs by more than 25 bpm
- Must compromise at least 2 minutes out of 10 minute segment
- Normal range is 110 – 160 bpm (NICHD)
- Always documented as a range
Fetal Heart Rate Baseline

- Set by atrial pacemaker
- Balanced interplay of sympathetic and parasympathetic autonomic nervous system
- Developing parasympathetic nervous system slows baseline during advancing gestational age
- Ideally assess baseline when: fetus not moving, fetus not stimulated, between contractions
Fetal Tachycardia

- **Definition**
 - Baseline FHR of 160 bpm or greater > 10 minutes (NICHD)

- **Description**
 - Increase in sympathetic and/or decrease in parasympathetic tone, sometimes associated with decrease in FHR variability

- **Etiology**
 - Fetal hypoxia
 - Maternal fever
 - Drugs
 - Amnionitis
 - hyperthyroidism
 - Fetal anemia
Fetal tachycardia

• Significance
 • Usually hypoxemia is not the reason, especially in a term fetus and a identifiable cause such as maternal fever or drugs
 • Can be a non reassuring sign if associated with late decelerations or absent variability
 • If > 220 bpm consider SVT

• Intervention
 • Maternal fever: can be reduced by antipyretics and IV hydration
 • Maternal oxygenation: supersaturation with O2 by facemask
 • NRFS: expeditiously deliver
Fetal Bradycardia

- **Definition**
 - FHR of 110 bpm or less for > 10 minutes

- **Etiology**
 - Late (profound) fetal hypoxemia
 - Beta blocker
 - Anesthetics
 - Maternal hypotension
 - Prolonged umbilical cord compression
Fetal bradycardia

- Clinical significance
 - Associated with loss of variability or late decelerations: NRFS
 - Substantial bradycardia (< 90 bpm) especially if prolonged and uncorrectable is a sign of impending fetal acedemia
 - Mild bradycardia 90-110 bpm with moderate variability and absence of late decelerations is generally reassuring
- Intervention: correction of underlying etiology, if not correctable usually emergent C/S
Variability

• Definition
 • Fluctuation in the baseline FHR of 2 or more cycles per minute
 • Quantify amplitude as follow:
 • Absent: undetectable
 • Minimal: 5 or less bpm
 • Moderate: 6 to 25 bpm
 • Marked: > 25 bpm
Variability

- Description
 - Normal irregularity of cardiac rhythm
 - Balancing interaction of the sympathetic and parasympathetic nervous system
 - Results from sporadic impulses of the cerebral cortex
 - Moderate variability reflects an intact neurological pathway, optimal fetal oxygenation and adequate tissue oxygenation
Variability

- **Short term variability**
 - Beat to beat change in FHR from one heart beat to the next
 - Described as absent or present
 - Only measurable by FSE
 - Controlled by parasympathetic nervous system
 - Present STV: reassuring for fetal oxygenation
Variability

- Long term variability
 - Influenced by sympathetic nervous system
 - Visually examined of rise and fall of FHR by counting of cycles within 1 minute and determining amplitude
 - Presence of LTV gives indication of fetal oxygenation
- Generally LTV and STV increase or decrease together, exceptions can be:
 - Fetal sleep: minimal LTV, present STV
 - Fetal anemia: moderate LTV, absent STV
Variability

- Marked variability
 - Mild hypoxemia
 - Fetal stimulation (contractions, SVE, FSE…)
 - Meds: Terbutalin, Albuterol
 - Drugs: Cocaine, methamphetamine, nicotine

Significance: unknown, not in itself a sign of NRFS

Intervention: observe FHT for non reassuring signs, changes in baseline, consider FSE
Variability

• Etiology of decreased variability
 • Hypoxemia / Acedemia
 • Meds: narcotics, barbiturates, anesthetics, parasympatholytics
 • Fetal sleep cycle (20-40 minutes)
 • Congenital anomalies
 • Fetal cardiac arrhythmias
 • Extreme prematurity (< 24 weeks)
Variability

- Significance and Intervention for decreased Variability
 - Depends on cause
 - No intervention if transient secondary to fetal sleep cycle or CNS depressants
 - If hypoxemia suspected: try to improve fetal blood oxygenation:
 - maternal positioning,
 - hydration,
 - correcting maternal hypotension,
 - maternal oxygenation,
 - elimination of uterine hyperstimulation
Sinusoidal Pattern

- Sine wave with undulating baseline
 - Regular oscillation with an amplitude of 5-15 bpm
 - 2 – 5 cycles per minute
 - Minimal or absent short term variability
 - Absence of accelerations
 - Extreme regularity and smoothness

- Etiology: fetal hypoxemia from fetal anemia, often secondary to Rh isoimunization
- Pseudosinusoidal pattern: sine wave is less uniform and STV present (narcotics, amnionitis, thumb sucking)
Accelerations

- **Definition**
 - Abrupt increase in FHR above baseline
 - Onset to peak:< 30 seconds
 - Peak : 15 bpm above most recent baseline (32 weeks and more)
 - Peak : 10 bpm above most recent baseline (< 32 weeks)
 - Duration (from increase to return to baseline) : 15 seconds, but < 2 minutes
 - Prolonged acceleration : 2- 10 minutes
 - Acceleration > 10 minutes: new baseline
Acceleration

- **Description**
 - Episodic (spontaneous) accelerations
 - Periodic accelerations (with contractions)

- **Etiology**
 - Stimulation of sympathetic autonomous nervous system
 - Spontaneous fetal movement
 - Vaginal examination
 - Abdominal palpation
 - Environmental stimuli (noise)
 - Scalp or vibroacoustic stimuli
 - Uterine contraction
 - Insertion of IUPC or FSE
Acceleration

- Clinical significance
 - Sign of intact fetal nervous system and reassuring FWB
 - Some fetal monitors have movement sensors
 - Repetitive accelerations: contractions compress umbilical cord and cause transient fetal hypotension -> baroreceptor-induced increase in FHR
Decelerations

- Early deceleration
- Late deceleration
- Variable deceleration
- Prolonged deceleration
Early deceleration

- **Definition**
 - Gradual decrease (onset to nadir > 30sec) of FHR and return to baseline
 - Nadir at time of uterine contraction peak

- **Description**
 - **shape:** uniform, mirror image of contraction phase
 - **Onset:** early in contraction
 - **Recovery:** with return of contraction to baseline
 - **Deceleration:** rarely < 110 bpm or 30 bpm below baseline
 - **Variability:** usually moderate
 - **Occurrence:** repetitious with each contraction, usually in active phase of labor or passive 2nd stage
Early deceleration

• Etiology
 • Uterine contraction: Fetal head compression leads to altered cerebral blood flow, leads to vagal stimulation
 • CPD (especially when occurs early in labor)
 • Persistent occiput posterior position

• Significance
 • No pathologic significance
 • Do not occur in all labors
Late decelerations

- **Definition**
 - **Onset**: late in contraction phase, onset to nadir > 30 sec, nadir after peak of contraction
 - **Recovery**: returns to baseline after end of contraction
 - **Deceleration**: rarely < 100 bpm, may be subtle (3-5 bpm)
 - **Variability**: often associated with decreased variability, rising baseline or tachycardia
 - **Occurrence**: repetitive with each contraction
Late Deceleration

- **Physiology**
 - Uterine hyperactivity or maternal hypotension
 - Decreases intervillous space blood flow during contraction
 - Decreases maternal /fetal oxygen transfer
 - Fetal hypoxia and myocardial depression
 - Vagal response -> cardio deceleration
Late Deceleration

- Etiology: uteroplacental insufficiency
 - Uterine hyperstimulation
 - Maternal supine hypotension
 - Gestational HTN
 - Chronic HTN
 - Postterm gestation
 - Amnionitis
 - IUGR
 - Poorly controlled maternal diabetes
 - Placenta previa
 - Abruption / maternal shock
 - Spinal anesthesia
Late Deceleration

• Clinical Significance
 • Non reassuring sign when persistent and uncorrectable
 • When associated with decreased variability and/or tachycardia: sign of fetal acidemia
 • As myocardial depression increases, depth of late deceleration decreases, becoming more subtle
 • Single deceleration is not clinical significant if rest of tracing is reassuring
Intervention for late deceleration

- Change maternal position to lateral
- Correct maternal hypotension
 - Legs up, head down
 - IV fluid bolus
 - Vasopressors
- Correct uterine hyperstimulation
 - Stop pitocin
 - Remove Cervidil
 - Consider tocolytic (0.2 – 0.5 mg Terbutalin iv)
- Hyperoxygentate maternal blood with O2
- Cervical exam
 - Labor status
 - Fetal scalp stimulation (only when FHR at baseline)
 - Consider FSE
- If repetitive and uncorrectable: expeditious delivery
Variable deceleration

- Characteristics
 - Shape: variable, (V, U, W), may not be consistent
 - Onset: onset to beginning of nadir (< 30 seconds)
 - Recovery: rapid return to baseline
 - Deceleration: > 15 bpm, often > 100 bpm
 - Duration: > 15 seconds, < 2 minutes
 - Occurrence: typically late in labor with descent of head, and in 2nd stage of labor
Variable decelerations

- Umbilical cord compression
- Partial occlusion (umbilical vein)
- Decreased venous return
- Decreases FSBP
- Baroreceptor mediated acceleration
- Complete occlusion (umbilical vein + arteries)
- Increases FSBP
- Baroreceptor mediated deceleration
Variable deceleration

- **Etiology**
 - Maternal position (cord between fetus and pelvis)
 - Cord around fetal neck or other body part
 - Short cord
 - True knots
 - Prolapsed cord
 - Oligohydramnios
 - After ROM
Variable deceleration

• Interpretation
 • Progression is more important than absolute parameters

• Grading
 • mild
 • < 30 seconds or
 • > 70 bpm + 30-60 seconds or
 • > 80 bpm for any duration
 • moderate
 • <70 bpm + 30-60 seconds
 • 70-80 bpm for > 60 seconds
 • severe
 • < 70 bpm for > 60 seconds
Variable declaration

- Reassuring features
 - Mild to moderate variable deceleration
 - Rapid return to baseline
 - Normal, not increasing baseline
 - Moderate variability

- Non-reassuring features
 - Severe variable deceleration
 - Prolonged return to baseline
 - Increasing baseline
 - Absent or minimal variability
Prolonged deceleration

- **Definition**
 - >15 bpm for > 2 minutes, < 10 minutes
- **Characteristics**
 - Shape: variable
 - Deceleration: almost always below normal FHR range, except in fetus with tachycardia
 - Variability: often lost
 - Recovery: often followed by period of late deceleration and or rebound tachycardia
 - Some fetuses don’t recover- > terminal bradycardia
Prolonged deceleration

• Etiology
 • Cord prolapse
 • Maternal hypotension (supine or regional anesthesia)
 • Tetanic uterine contractions
 • Pitocin
 • Abruption
 • cocaine
 • Maternal hypoxemia
 • Seizures
 • Narcotic overdose
 • Magnesium sulfate toxicity
 • High spinal anesthetic
 • Fetal head compression or stimulation can produce strong vagal response
 • FSE, pelvic exam, sustained maternal Valsalva, rapid fetal descent

• Significance: Depending on recovery and post deceleration FHR tracing
Meta-analysis of 9 RCT comparing EFM to auscultation

- EFM increased the overall C/S rate (OR 1.5) and C/S rate for suspected fetal distress (OR 2.5)
- EFM increased the use of vacuum assisted (OR 1.2) and forceps assisted (2.4) operative vaginal delivery
- EFM use did not reduce overall perinatal mortality (OR 0.8, CI 0.57-1.33), but perinatal mortality caused by fetal hypoxia appeared to be reduced (OR 0.4)
Does EFM reduce cerebral palsy?

- The positive predictive value of a nonreassuring pattern to predict cerebral palsy among singeltons with birth weights > 2500 g is 0.14%.
- Out of 1000 fetuses with a nonreassuring FHR pattern only 1-2 will develop CP.
- False positive rate is 99%.
- Available data suggests EFM does not reduce CP.
- Occurrence of CP has been stable over time despite widespread introduction of EFM.
- 70% of CP cases occur before onset of labor.
- 4% only can solely attributed to intrapartum events.
What is the interobserver and intraobserver variability of electronic FHR assessment?

- Wide variation in the way obstetrician interpret EFM tracings.
- 4 OB’s examined 50 EFM tracings and agreed in only 22% of the cases.
- 2 months later reviewing the same 50 tracings they interpreted 21% of the tracings differently than they did during the first evaluation.
- There is greater agreement if the EFM is reassuring.
What medications affect the FHR?

- **Epidural**: can lead to sympathetic blockage -> maternal hypotension -> transient uteroplacental insufficiency -> alterations in FHR

- **Parenteral narcotics**: decreased FHR variability, less accelerations

- **Corticosteroids**: transiently decreases FHR variability with return by the 4.-7. day and may reduce rate of accelerations.
What findings on EFM reassure fetal status?

- **Accelerations**: ensures that the fetus is not acidemic.
- **Variability** (sparse data): in case of normal (moderate) FHR variability and late decelerations umbilical arterial pH > 7 in 97% of cases.

→ In most cases normal FHR variability provide reassurance about fetal status.
What ancillary tests can reassure fetal status?

- Decreased or absent variability without spontaneous accelerations:
- Make an effort to elicit an acceleration with:
 - Digital scalp stimulation
 - Allis clamp scalp stimulation
 - Vibroacoustic stimulation
 - Fetal scalp sampling